
C. R. Mecanique 337 (2009) 469–480

Combustion for aerospace propulsion

Destabilization of flapping sheets:
The surprising analogue of soap films

H. Lhuissier a, E. Villermaux a,b,∗

a Aix-Marseille Université, IRPHE, 13384 Marseille cedex 13, France
b Institut Universitaire de France

Available online 22 July 2009

Abstract

When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed, balancing surface
tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized,
exhibiting deep indentations from which droplets are ejected. A surprising new three-dimensional mechanism explaining this
destabilization and resulting wavelength has been demonstrated: because of the shear between the still outer medium and the
receding liquid, the film flaps through a Kelvin–Helmholtz instability, itself inducing an acceleration perpendicular to the film,
which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh–Taylor mechanism, promoting
the rim indentations. To cite this article: H. Lhuissier, E. Villermaux, C. R. Mecanique 337 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

The transition from a compact macroscopic liquid volume to a set of dispersed smaller drops often involves as a
transient stage the change of the liquid topology into a sheet shape. This transition is sometimes enforced by specific
man-made devices, and also occurs spontaneously as a result of various impacts and blow-ups. An easy way to produce
a spray, widely used in the context of liquid propulsion engines, is to form a liquid sheet by letting a jet impact a solid
surface, or a facing alike jet (see Fig. 1).

The sheet, when the liquid is a uniform phase exempt from nucleation sites, disintegrates into drops by the desta-
bilization of its edges. Pioneer works of Savart (1833) [2–4], and later Taylor (1959) [5,6] and Huang (1970) [7]
essentially focused on the resulting sheet shape and its spatial extension. These depend on the impact Weber We
formed from the ratio of the liquid inertia in a Galilean frame ρu2 to the capillary restoring pressure σ/d where u

is the velocity difference of the liquid stream with its surroundings, ρ its density, σ its surface tension and d some
injection size

We = ρu2d

σ
(1)
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Fig. 1. Impacting jets in the combustion chamber of the gas generator of an industrial propulsion engine from SNECMA (see also [1]).

The sheet radial extension is either solely dependent on We, or depends both on We and on the ratio of the liquid to
ambient gas densities α = ρa/ρ. The transition occurs for [8]

We = O
(
α−1/2) (2)

Below this limit, the sheet is smooth, and above, it sustains a shear, flag-like Kelvin–Helmholtz type of instability
resulting from a global coupling between the liquid and its environment, usually a gas phase (see Squire (1953) [9],
also [10–13] and Fig. 2). The onset of this instability alters dramatically the fragmentation process of the sheet, leading
to comparatively much finer drops whose ultimate formation process is still under debate [14].

The study of soap films has been conducted by a different school of thought, not immediately motivated by par-
ticular applications, and its experimental facet has really emerged with Ranz [16] and Mysels [17,18]. Much effort
has been paid at understanding the different kind of waves a film can sustain [19] and at the hole opening dynamics,
when the film is punctured. At the hole rim, surface tension forces are no longer balanced, driving a flow from the
hole edge to the bulk of the film which is limited by liquid inertia. The long standing question of the exact value of
the opening velocity was solved by Taylor [6] and Culick [20], after attempts by Dupré [21] and Rayleigh [22] using
a flawed energy conservation approach.

Yet, if the question of the rim receding velocity is settled, the question of its stability is still unsolved. However, its
ultimate destabilization is an obvious feature of the overall opening dynamics, as illustrated in Fig. 3, but its analysis
has to date resisted a convincing representation, despite several attempts in related contexts aiming at describing a
capillary instability of a Plateau–Rayleigh type of a thick cylindrical-like rim attached to a thin sheet.

We report in this article on novel observations suggesting that the phenomenology of flapping sheets from fan
spray nozzles familiar in agricultural sewage or combustion chambers is, as surprising as it may be, the same as that
of spontaneously bursting soap films.

2. Edge receding velocity

When an initially quiet liquid film is punctured, the equilibrium of surface tension forces in the plane of the film is
broken. If the hole diameter is big enough (i.e. larger than the film thickness typically), the hole opens and the liquid
constitutive of the film is collected in a growing rim at the border of the hole (Fig. 4).

Disregarding the details of the rim shape and assuming that it is sufficiently compact so that its center of mass can
be confused with its edge, the opening dynamics of the hole derives from global mass and momentum conservations
applied to the rim, following the classical description of Taylor (1959) [6] and Culick (1960) [20]. For a film of
uniform thickness h, uniform surface tension σ , and liquid density ρ, these amount to

d

dt

(
x(t)ẋ(t)

) = 2σ

ρh
(3)

where x(t) stands for the location of the center of mass of the rim and for x(0) = 0 (i.e. with a vanishingly small
initial mass). The factor 2 in Eq. (3) comes from the two sides of the film. The solution of (3) is a constant velocity
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Fig. 2. Liquid sheet issuing from a fan spray nozzle ((a) front and (b) side views, reproduced from [15]) showing the flag instability characteristic
of liquid sheets moving rapidly with respect to their environment (see also [8]).

V = x(t)

t
=

√
2σ

ρh
(4)

known as the Taylor–Culick velocity expressing a balance between a constant force 2σ applied to a growing mass
ρhx(t). The relevance of this result for soap films was confirmed experimentally by McEntee and Mysels (1969)
[17]. That velocity is considerable for thin films. For instance, a typical soap film is h = 1 µm thick and recedes at
V = 6 m/s.

The time it takes for the rim to accelerate up to its limit speed V is of the order of several times h/V . In the
experiment shown in Fig. 4, the film was pierced by a spark of typical size 10h. As seen in Fig. 4, the rim has traveled
by much more than 10 times the film thickness h while remaining smooth, so that this short acceleration period is
actually negligible if one is interested in the later stages of the rim destabilization.

3. The picture with surfactant

The simple sketch recalled above consisting of a concentrated mass at the rim pulled by a constant force is relevant
for pure liquids like water sheets [6,23]. However, when it is formed from a soap solution, the layer of surfactant at
its surface confers to the sheet an original surface rheology which modifies drastically the rim shape, without altering
the global mass and momentum balances, and therefore the limit receding velocity. The reason is that local surface
tension on the film depends on the local surfactant concentration Γ [24]. Precisely, σ decreases typically when Γ

increases: a compressed area of the film Γ ′ > Γ , as those close to the rim will thus have a tension σ ′ smaller that
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Fig. 3. Opening dynamics of a soap film standing vertically and punctured by a sharp object. Left: Front view showing how the hole has opened at
two consecutive instants of time t1 and t2, and how its rim progressively destabilizes. Right: Space time diagrams in the vertical direction towards
the top and the bottom of the film evidencing acceleration of the rim towards the thinner regions of the film, and deceleration towards the thicker
regions.

Fig. 4. Early stage of the opening of a soap film. Images are sampled every 200 µs.

those far from the rim σ given by the equilibrium concentration Γ . A net force σ − σ ′ thus appears from the rim
recession, which contributes to the liquid rearrangement in the rim.

The result is an extended rim, with fluid particles moving far ahead from the hole edge and a marching rim shape.
The phenomenon can be quantified by an interferometric method as described below.

3.1. Experiments and observations

A solution of commercial surfactant (Dreft by Procter & Gamble, a mixture of non-ionic and anionic molecules)
is diluted in tap water. The concentration in surfactant is always larger than the critical micelle concentration, a
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Fig. 5. Evidence of the aureole surrounding an opening hole in a flat soap film. The initial parallel interference fringes are perpendicular to gravity.
Images are sampled every 320 µs.

concentration above which aggregates (micelles) form and surface tension saturates. This ensure surface tension of
the solution to have at saturation value σ = 32 × 10−3 N/m.

A 10 × 20 cm2 aluminum frame is immersed into the solution and is pulled out slowly to form a flat rectangular
soap film standing vertically in the gravity field. For the whole experiment, the frame supporting the film is kept in a
vapor saturated atmosphere to prevent liquid evaporation.

The film is lit by a diffuse monochromatic source coming from a mono mode argon laser operating at wavelength
λl = 488 nm. The beam is scattered by a lens to form a spot on a diffuser. Fringes are observed by reflexion over the
film (see Fig. 5 and also [25]). They are either constructive or destructive interference fringes between rays that reflect
on the upper film interface and those that are reflected by the rear interface. The difference of path length between the
reflected rays depend on the local thickness h and thus a fringe traces locations of constant thickness. For a film lit
under a weak incidence angle, the difference of film thickness between two consecutive black fringes is [26]

�h = λl

2n cos r
� λl

2n
(5)

where n is the refraction index of water and r is the refraction angle. The distance between two consecutive fringes is
thus a direct measure of the local thickness gradient.

A sequence of the opening of such a soap film is shown in Fig. 5 taken with a Photron APX digital fast camera
operating at 25 000 frames/s. The initial interference pattern in Fig. 5 shows that h is uniform along horizontal lines
but varies with altitude (i.e. the direction where gravity points). Higher locations correspond to weaker gradients. This
“Eiffel tower”-like thickness profile is a consequence of liquid drainage under gravity. The corresponding equilibrating
surface tension gradient is however much weaker that the one generated by the hole opening, as Fig. 5 demonstrates
also.

The film is punctured by an electric arc generated by a potential difference of several kVolts applied to two elec-
trodes facing each other, one above and one behind the film. The hole nucleated by the arc grows with time, keeping
a disk shape characteristic of an isotropic opening velocity V . Around the disk, a region of typical radial extent
L(t) ∼ V t develops, where the fringes pattern is modified. McEntee and Mysels (1969) [17] observed this region for
the first time and called it the “aureole”, a crystal-clear term to depict Fig. 5.

A way to extract information from these movies is to focus on the horizontal segment starting at the puncture point
which corresponds to an initially thick-uniform film section. A spatio-temporal diagram of the brightness pattern
along this segment is shown on Fig. 6. On this diagram, horizontal distances from the left-hand border represent the
spatial distance r from the piercing point, whereas vertical distances from the top border represent the time elapsed
since the piercing instant.
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Fig. 6. Spatio-temporal diagram showing the evolution of an initially uniform film section. The top left corner is the piercing point. The width of
the picture represents 4.5 cm and its height corresponds to 6.5 ms.

Fig. 7. Sketch of the rim shape, or aureole. The width L(t) is proportional to the distance traveled by the edge V t .

It is immediately clear on this (r, t) diagram that the trajectory of any iso-thickness path is straight. This means
that their velocities in the laboratory frame of reference are constant in time. Each of those velocities is in addition
easy to measure with a good accuracy.

From the disk opening velocity V given by Eq. (4), the value of the initial thickness h is measured. Since in-
terference fringes provide an information on the relative thickness between different portions of the film only, this
absolute thickness measurement is mandatory to reconstruct the thickness profile of the whole film from the complete
interference pattern.

3.2. Driving forces and rim shape

The aureole has its origin in the surface tension gradients generated by the hole motion itself that surfactant solu-
tions authorize, in contrast with pure liquids for which surface tension is a constant (albeit thermal effects which are
absent here).

We will discuss the equations governing the base state of thickness and liquid velocity fields in the aureole in the
one dimensional approximation (corresponding to the case of a rupture of the film along a straight line instead at in a
point). This does not change the ingredients of the problem, but makes its exposition simpler.

At constant thickness, the problem presents a translation invariance along the rim direction (Fig. 7). That invariance
is eventually broken by the development of the rim instability, which we will consider next. The physical scales of the
problem are: h ∼ 1 µm (thickness), L > 1 mm (radial extent), ρ = 103 kg m−3 (liquid density), σ = 32 × 10−3 N m−1

(surface tension of the soap solution at equilibrium), μ = 10−3 N m−2 s (liquid viscosity).
The starting point is that thickness gradients in the aureole, hx ∼ h/L < 10−3 are weak. This legitimates a slender

slope description, where averaged thickness h(x, t) and velocity u(x, t) profiles are seek for, with no explicit repre-
sentation of the motion in the (small) direction perpendicular to the film (see e.g. [27]). For an incompressible liquid,
the conservations laws are

ht + (uh)x = 0 (6)

ρh(ut + uux) = f (7)

where f stands for the resultant forces (by unit of length) applying to a film section. An order of magnitude estimate
of the different forces involved in f is as follows:
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• Surface tension itself (independently of its gradient) contributes through Laplace law (κ is the interface curvature)
as

σ(hκ)x ∼ 1

2
σ(hhxx)x ∼ 1

2

(
h

L

)3
σ

h
(8)

• Viscous effects, assuming a Newtonian viscous response, integrated over the film thickness arise through a Trou-
ton term [27]

4μ(hux)x ∼ 8h0

L2

μ√
2σρh0

σ ∼ 8Oh

(
h

L

)2
σ

h
(9)

where the Ohnesorge number Oh = μ/(
√

2σρh) is the ratio of surface tension forces to viscous dissipation forces
and is of the order of 10−1 to 1 in the present case.

• Lastly, the stress resulting from the gradient of surfactant concentration, sometimes referred to as a Marangoni
stress gives a contribution(

2σ√
1 + h2

x

)
x

∼ 2

(
h

L

)
σ

h
(10)

With h/L < 10−3, it is clear that the last term dominates over the others. If one moreover assumes that surfactant
molecules have no time to reorganize at the interface and are advected in a passive way with the fluid (see e.g. [28]),
one has d lnΓ = d lnh. This provides a new set of equations in place of (6) and (7)

ht + uhx = −hux (11)

ut + uux = 2σx

ρh
(12)

with

2σx

ρh
= −

(
E

ρh3

)
hhx (13)

where E, possibly depending on h, is a Marangoni elasticity module

E = −2
dσ

d lnΓ
= −2

dσ

d lnh
(14)

The origin of this surface elasticity is that surface tension σ decreases as the surface concentration of surfactant Γ

increases. Rim recession induces a contraction of area in the film plane, and thus a local decrease of σ , hence the net
force in (12) which appears to be, owing to the order of magnitude estimates made above, the dominant driving force.
The system of Eqs. (11) and (12) was solved by Frankel and Mysels (1969) [18] using the methods of characteristics.

The first result is that for unidimensional receding aureoles, solutions depend on the law σ(h) only. They have the
self-similar form⎧⎪⎪⎨

⎪⎪⎩
h(x, t) = hF

(
x

V t

)

u(x, t) = V G
(

x

V t

) (15)

where F and G are functions depending on the details of the σ(h) dependence. Although technically more complex
in the axi-symmetrical coordinates relevant to a punctual piercing with radial expansion along r , the solutions are also
self similar in r/V t , consistently with the measurements shown in the next section.

The second result is that the rim receding velocity V is almost not affected by the dependence σ(h), which nev-
ertheless is responsible for the existence of an aureole. This was checked by McEntee and Mysels [17] since their
empirical confirmation of the Taylor–Culick prediction for V was carried out on soap films.
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Fig. 8. Left: Thickness profiles of the aureole at successive instants of the bursting sampled every 320 µs. Dots represent measurements and lines
are meant to guide the eyes. Insert: the same profiles plotted versus r/V t . Right: Liquid velocity profiles of the aureole at successive instants of the
bursting versus radius r scaled by the current edge position V t sampled every 320 µs.

3.3. Measurements

Radial thickness profiles of the aureole h(r, t) were computed from fringes patterns at distinct times t and are
plotted in Fig. 8. They exhibit the expected similar shape (hence giving a direct measurement of the function F ) as
well as a saturation of the maximal thickness we were able to measure close to the rim edge at h(0) ≈ 2h. This may
be indicative of the maximal compression ratio the sheet is able to sustain.

The liquid velocity can also be reconstructed, using mass conservation in the axi-symmetrical case

u(r, t) = 1

hr

r0∫
r

∂h

∂t
r dr (16)

where r0 is a radial location far from the rim, in the unperturbed region of the film. The obtained velocity profiles are
shown in Fig. 8. They are plotted versus r scaled by the current edge position V t . Their superposition on a same curve
is a direct proof of their self similarity, defining experimentally the function G introduced in Eq. (15). From the film
edge moving at V to the limit of the aureole moving 2.5 times faster, the liquid velocity u has decreased from V to 0,
since the unperturbed portion of the film is not, by definition, set into motion yet.

4. Flapping

The existence of an extended rim, or aureole, genuine to soap films as described above has a direct consequence on
their stability. Precisely, the liquid is set into motion far ahead from the rim edge, and thus sustains a shear with the
surrounding medium for an ever longer radial distance, of the order of L(t) as time elapses. This shear, as it is known
since Squire (1953) [9], potentially leads to an instability. This remark, illustrated below is, to our knowledge, new in
the context of soap films.

That shear instability, of a standard Kelvin–Helmholtz type, sustains two different modes, a varicose mode in which
both interfaces move in phase opposition and a sinuous mode (flapping) in which they move in phase. The latter is the
most amplified [8].

A fundamental difference with the pure Kelvin–Helmholtz instability between two infinite phases is related to the
finite thickness h of the film, sandwiched between two lighter infinite phases, since instability can only develop in that
case above a threshold given by

We = ρu(x, t)2h(x, t)
> 2 (17)
σ(h)
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Fig. 9. Flapping pulsation ω versus ρaV 3/σ .

where u(x, t) is the velocity difference between the film and the outer light (in the present case air) still phase.
This threshold simply expresses that the local velocity difference u(x, t) should be at least equal to

√
2σ(h)/ρh for

instability to occur.
Obviously, there is a region close to the rim edge where this condition is likely to be satisfied. There, the film

thickness is larger than h and the local surface tension σ(h) is lower than σ , while u(x, t) is of the order of V (see
Fig. 8). This region defines the unstable zone, in the sense of Squire according to the criterion in Eq. (17).

Experiments clearly show that the edge of a receding soap film flaps (see Fig. 10) in a way reminiscent of the well
known flapping sheets of uniform velocity, and surface tension (see Fig. 2). Two flapping waves also appear in Fig. 6
as a perturbation of the self similar pattern. They birth in the unperturbed region of the film, and their amplitude peaks
at the edge. Assuming, for simplicity, an infinite, uniform film of thickness h in relative motion at velocity u(x, t) ≈ V

with an air environment of density ρa , the most amplified wavelength and the pulsation scales are [8]⎧⎪⎪⎨
⎪⎪⎩

λ ∼ σ

ρaV 2
∼ ρ

ρa

h

ω ∼ V

λ
∼ ρaV

3

σ

(18)

Measurements of the flapping pulsation in air under standard temperature and pressure conditions for which ρa =
1.2 kg m−3 are shown in Fig. 9. The pulsation (or flapping) frequency follows the anticipated trend in Eq. (18) in law,
and in absolute value, thus supporting the scenario rooted on a shear instability we have proposed.

5. Rim indentations

When observed over a longer time period than the one in Fig. 4, a bursting soap film will be seen to suddenly
destabilize. Indentations pointing toward the center of the hole appear on the formerly smooth edge, becoming the
ejection sites of liquid ligaments which later pinch off to form the final spray. A sequence of this phenomenon is
presented on Fig. 10. The phenomenon has been known for a while, and the flapping mechanism provides a clue
to understanding it. The scenario for the formation of the indentations transverse to the rim derives from the “wavy
corridor” mechanism imagined by Bremond et al. [14] for the destabilization of undulating Savart sheets. The wavy
pattern consecutive of the flapping instability propagates at a group velocity proportional to V on the film. A fluid
particle in the flapping region thus experiences transient accelerations perpendicular to the film plane (whose intensity
is γ = aω2 for a flapping amplitude a) as the wave propagates. This, in turn, initiates a Rayleigh–Taylor instability
of the film which causes film thickness modulations at a transverse wavelength λ⊥, precursors of the rim indentations
visible in Fig. 10. The full mechanism is thus a succession of two destabilizations of the film. The first shear instability
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Fig. 10. Left: Evidence of the rim destabilization in a soap film. Images are sampled every 6.7 ms. Right: Snapshot emphasizing on indentations.
Note the arabesques, ligaments detaching from the rim as they flap like a whip.

Fig. 11. Left: Delay time τd before destabilization occurs versus σ/ρaV 3. Insert: the same data plotted versus V . Right: Characteristic indentations
growth time τ versus σ/ρaV 3.

breaks the symmetry with respect to the film median plane, and a second inertial instability of the undulating substrate
breaks the axial-symmetry by forming indentations.

Let s be the growth rate of the transverse, Rayleigh–Taylor instability for a given flapping pulsation, wave am-
plitude, and film thickness. The transverse indentation will onset as soon as the permanence time of the acceleration
perpendicular to the film ω−1 will be at least equal to the instability development time s−1. The transverse instability
criterion is thus [8,14]

ω = s (19)

also providing an estimate for the delay time before the onset of indentations τd , and for the time of growth of the
indentation amplitude τ which are both expected to scale like ω−1 i.e.

τd ∼ τ ∼ ω−1 (20)

These expectations have been tested experimentally using two different surrounding atmospheres in order to check
the role of the density ratio ρa/ρ. We bursted soap films both into air and into hexafluorosulfur (SF6), whose density
under standard conditions is 5 times that of air.

Films receding at a same given velocity were seen to develop indentations after a shorter delay τd when bursting
into SF6 than when bursting into air, as expected according to Eq. (18). This fundamental observation demonstrates
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Fig. 12. Indentations transverse wavelength λ⊥ as defined in the insert, versus σ/ρaV 2.

that the rim instability is directly influenced by the outer medium. Measurements are presented on Fig. 11. Both τd

and τ are increasing functions of σ/ρaV
3, with however a somewhat weaker trend than the one anticipated from

Eq. (18).
The transverse Rayleigh–Taylor instability of the rim is rooted in the transient accelerations experienced by the

liquid as it flows through the primary wavy pattern of the sheet. Let γ be the intensity of this acceleration. The
cut-off wavenumber of the instability is kc = √

ργ/σ . If kch 	 1, the instability growth rate is s ∼ √
γ /λ⊥ with

λ⊥ ∼ √
σ/ργ . In the opposite limit i.e. when kch 
 1, the growth rate s as well as λ⊥ now depend on the film

thickness as [14]

s =
√

γ

λ⊥
∼

√
ργ 2h

σ
and λ⊥ ∼ (

k2
ch

)−1 (21)

This limit is by far the relevant one here (see Figs. 10 and 12) so that λ2⊥h ∼ σ/ρs2 providing, with s ∼ ω ∼ ρaV
3/σ

and h ∼ σ/ρV 2

λ⊥ ∼ λ (22)

The primary undulation and secondary indentation patterns have alike lengthscales, representing a strong dependence
of λ⊥ on V indeed observed experimentally in trend, and absolute values as seen in Fig. 12.

6. Conclusion

The set of observations reported here have demonstrated the direct coupling between the destabilization of a reced-
ing rim in a soap film, and the medium in which it bursts. That observation is original in the context of soap films and
is a consequence of a flapping instability of the extended aureole that forms as a punctured hole opens. That flapping
induces a secondary Rayleigh–Taylor type of instability of the rim, explaining the birth of its transverse indentations.
The phenomenon is surprisingly analogue to the well known flapping regime of liquid sheets, and has been analyzed
along the same lines.

The flapping mechanism, discovered and documented here, also answers the unsolved question of the ejection
angle of the drops released by the rim. De Gennes (1996) [29] has proposed that the drops are ejected at an angle
with respect to the film plane because the rim edge is a stagnation point the drops avoid while keeping their kinetic
energy. The present vision rather suggests that drops are ejected by ligaments which flap like whips (this is obvious in
Fig. 10), spreading out the drops out of the film plane.

The structure of the spray and resulting drop size distribution is left for future work.
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